کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1525472 | 995356 | 2010 | 6 صفحه PDF | دانلود رایگان |

Hot filament chemical vapour deposition (HFCVD) technique was applied to deposit a porous tungsten oxide film on glass wafers. The tungsten filament was used as a source in a vacuum atmosphere. The porous film was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray thermodiffraction, nitrogen sorption and small-angle X-ray scattering. From these characterization techniques it was found that porous film presents a clusters-like morphology of WO3−x particles. The particles are arranged on substrate in a way that free spaces are originated, as a 3D network of pores. By increasing temperature, the BET specific surface area of the porous film changes from 38.67 to 34.5 m2 g−1 most likely due to the particles have a tendency to stick together to form aggregates, particularly at high temperature. A fractal geometry approach permits to elucidate the interconnection between the particles and a simple model of the porous structure is proposed.
Journal: Materials Chemistry and Physics - Volume 120, Issue 1, 15 March 2010, Pages 36–41