کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1529425 | 995754 | 2012 | 7 صفحه PDF | دانلود رایگان |
![عکس صفحه اول مقاله: Electric response of Pb0.99[(Zr0.90Sn0.10)0.968Ti0.032]0.98Nb0.02O3 ceramics to the shock-wave-induced ferroelectric-to-antiferroelectric phase transition Electric response of Pb0.99[(Zr0.90Sn0.10)0.968Ti0.032]0.98Nb0.02O3 ceramics to the shock-wave-induced ferroelectric-to-antiferroelectric phase transition](/preview/png/1529425.png)
Shock-wave-enforced ferroelectric (FE)-to-antiferroelectric (AFE) phase transition releases a large electrical polarization, having application in pulse power technology. In the present work, the depoling currents under shock wave compression were investigated in Pb0.99[(Zr0.90Sn0.10)0.968Ti0.032]0.98Nb0.02O3 (PZST) ceramics with composition close to the FE/AFE phase boundary. Shock wave was generated by gas-gun and propagated in a direction perpendicular to the remanent polarization. It was found that the shock pressure promoted the phase transition under the short-circuit condition. The shock pressure dependence of the released charge was associated with the evolution of FE-to-AFE phase transition. The onset of phase transition was about 0.40 GPa and complete transformation occurred at 1.23 GPa. However, the released charge decreased with increasing load resistance. The reason may be that the electric field suppresses the phase transition in uncompressed zone and/or shock induces conductivity in compressed zone. Results lay the foundation for application of PZST ceramics in shock-activated power supply.
► Shock wave induces the FE-to-AFE phase transition in PbNb(Zr,Sn,Ti)O3.
► Depoling current due to phase transition depends on shock pressure and load resistance.
► Shock pressure promotes the phase transition in short-circuit case.
► Increasing load resistance decreases the released charge.
Journal: Materials Science and Engineering: B - Volume 177, Issue 2, 15 February 2012, Pages 210–216