کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1536170 | 996562 | 2012 | 5 صفحه PDF | دانلود رایگان |

We study the propagation of mid-infrared surface plasmons on non-tapered and tapered two-wire transmission lines on Si and CaF2 substrates, the two materials representing substrates with large and small refractive index, respectively. A comparative numerical study predicts a larger effective wavelength and an increased propagation length (i.e. weaker damping) for the CaF2 substrate. By near-field microscopy we image the near-field distribution along the transmission lines and experimentally verify surface plasmon propagation. Amplitude- and phase-resolved near-field images of a non-tapered transmission line on CaF2 reveal a standing wave pattern caused by back-reflection of the surface plasmons at the open-ended transmission line. Calculated and experimental near-field images of tapered transmission lines on Si and CaF2 demonstrate that for both substrates the mid-IR surface plasmons are compressed when propagating along the taper. Importantly, the nanofocus at the taper apex yields a stronger local field enhancement for the low-refractive index substrate CaF2. We assign the more efficient nanofocusing on CaF2 to the weaker damping of the surface plasmons.
Journal: Optics Communications - Volume 285, Issue 16, 15 July 2012, Pages 3378–3382