کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
154506 456842 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhancing catalyst effectiveness by increasing catalyst film thickness in coated-wall microreactors: Exploiting heat effects in catalytic methane steam micro-reformers
ترجمه فارسی عنوان
افزایش اثربخشی کاتالیزور با افزایش ضخامت فیلم کاتالیزور در میکروسکوپ های دیوار پوشانده شده: بهره برداری از اثرات گرما در مایع اصلاح گران بخار متان کاتالیزور
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


• Investigated impact of increasing catalyst loading in catalytic-wall microreactors.
• New catalyst design rules for catalytic methane steam reforming in microreactors.
• Design rules exploit internal heating of endothermic catalyst washcoatings.
• Theory outlines design space for maximizing both thermal and catalyst efficiency.
• Industrial microreactor simulations confirm benefit of increased catalyst loading.

The potential for increasing endothermic reforming process capacity of a heat-exchanger microreactor without compromising thermal or catalyst efficiency via employing unconventionally-thick catalyst washcoatings is investigated. This is achievable through exploiting the “internal” heating of the catalyst film, i.e. existence of a non-zero heat flux at the wall-catalyst interface at the inner boundary of the film, which is a characteristic of the heat-exchanger microreactor design. Classical one-dimensional analysis of non-isothermal reaction and diffusion in an internally-heated catalyst film identifies minimum values for Prater Temperature and dimensionless activation energy required for internal accumulation of applied heat to be effectively utilized. Under such conditions, analysis confirms the existence of a range of Thiele Moduli, or catalyst film thicknesses, corresponding to complete utilization of internally-supplied heat at catalyst effectiveness greater than unity. Subsequent application of these design rules to a previously validated computational fluid dynamic (CFD) model of an industrial annular micro-channel reformer (AMR) for methane steam reforming confirm that increasing catalyst film thicknesses to values corresponding to Thiele Modulus greater than unity enables intensification of the microreactor performance via increasing reforming capacity while maintaining equivalent thermal efficiency and retaining competitive catalyst effectivenesses.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Science - Volume 143, 2 April 2016, Pages 47–54
نویسندگان
, ,