کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1555924 | 999161 | 2016 | 6 صفحه PDF | دانلود رایگان |
Directionally solidified eutectic ceramics such as Al2O3/ZrO2 are promising structural materials for applications in harsh environment with an ultrahigh temperature. In this work, through adopting assistant heating laser 3D printing, Al2O3/ZrO2 eutectic samples were manufactured with suppressing the formation of cracks. The dependence of the average rod spacing (λav) on the scanning rate (V) follows a relation with λavV0.5 = 1 µm1.5 s–0.5. Typical eutectic microstructures, so-called complex regular, were analyzed with respect to its evolution with modulating the growth conditions. Formation mechanism of the solidification defect, shrinkage porosity, was discussed and the defect is found to be significantly suppressed by optimizing the solidification parameters. The maximum hardness and fracture toughness are measured to be 16.7 GPa and 4.5 MPa m1/2, respectively. The interplay between the propagation of cracks and the Al2O3/ZrO2 interface is discussed.
Journal: Journal of Materials Science & Technology - Volume 32, Issue 4, April 2016, Pages 320–325