کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1559719 1513887 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-objective optimization techniques to design the Pareto front of organic dielectric polymers
ترجمه فارسی عنوان
تکنیک های بهینه سازی چند منظوره برای طراحی قسمت پارتو پلیمر های دی الکتریک آلی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
چکیده انگلیسی

We present two Monte Carlo algorithms to find the Pareto front of the chemical space of a class of dielectric polymers that is most interesting with respect to optimizing both the bandgap and dielectric constant. Starting with a dataset generated from density functional theory calculations, we used machine learning to construct surrogate models for the bandgaps and dielectric constants of all physically meaningful 4-block polymers (that is, polymer systems with a 4-block repeat unit). We parameterized these machine learning models in such a way that the surrogates built for the 4-block polymers were readily extendable to polymers beyond a 4-block repeat unit. By using translational invariance, chemical intuition, and domain knowledge, we were able to enumerate all possible 4, 6, and 8 block polymers and benchmark our Monte Carlo sampling of the chemical space against the exact enumeration of the surrogate predictions. We obtained exact agreement for the fronts of 4-block polymers and at least a 90% agreement for those of 6 and 8-block polymers. We present fronts for 10-block polymer that are not possible to obtain by direct enumeration. We note that our Monte Carlo methods also return polymers close to the predicted front and a measure of the closeness. Both quantities are useful information for the design and discovery of new polymers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Materials Science - Volume 125, December 2016, Pages 92–99
نویسندگان
, , , , ,