کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1560430 1513911 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A quantitative phase-field model for two-phase elastically inhomogeneous systems
ترجمه فارسی عنوان
یک مدل فاز کم فاز برای سیستم های دوجانبه الاستیک غیر همجنس
کلمات کلیدی
مدل میدان فاز، رابط های منسجم، تکامل میکروارگانیسم، تبدیل فاز، کشش انحصاری، انرژی رابط
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
چکیده انگلیسی


• A new quantitative phase-field model for 2-phase elastically inhomogeneous systems.
• Coupling of mechanical and chemical behaviour.
• Validation with analytical solutions in 2D and 3D.
• Simulations for different geometries with planar and non-planar interfaces.

Solid-state phase transformations are influenced by strains that are generated internally or applied externally. The stress state, composition, and microstructure evolution, which together determine the properties of solid materials can be studied using phase-field models coupled with micro-elasticity theory in the small strain limit. This coupling has been implemented using various schemes in literature. In a previous article (Durga et al., 2013), the authors evaluated three main existing schemes for a two-phase system and concluded that these schemes are not quantitative for inhomogeneous anisotropic elastic properties of the two phases. The stress states predicted by these models deviate from the expected values due to the generation of extra interfacial energy, which is an artefact of the models resulting from interfacial conditions different from local mechanical equilibrium conditions. In this work, we propose a new scheme with interfacial conditions consistent with those of the analytical results applicable to a general system where shear strains may be present. Using analytical solutions for composition and stress evolution, we validate this model for 2D and 3D systems with planar interface in the presence of misfit between phases and applied strains, and a 2D system with an elliptical second-phase particle. This extended scheme can now be applied to simulate quantitatively the microstructural evolution with coupled chemical and mechanical behaviour in any 2D or 3D two-phase system subject to internal or external strains irrespective of interface curvature.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Materials Science - Volume 99, March 2015, Pages 81–95
نویسندگان
, , ,