کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1560696 1513914 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Graphene reinforced nanocomposites: 3D simulation of damage and fracture
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Graphene reinforced nanocomposites: 3D simulation of damage and fracture
چکیده انگلیسی


• 3D micromechanical model of graphene reinforced nanocomposites (GRNC) developed.
• Ranking of factors influencing GRP strength determined.
• Sheet crumpling and misalignment have the strongest effect on the strength.

3D computational model of graphene reinforced polymer composites is developed and applied to the analysis of damage and fracture mechanisms in the composites. The graphene/polymer interface properties are determined using the inverse modeling approach. The effect of composite structure, in particular, of the aspect ratio, shape, clustering, orientation and volume fraction of graphene platelets on the mechanical behavior and damage mechanisms of nanocomposites are studied in computational experiments. It was shown that the Young modulus of the nanocomposites increases with increasing aspect ratio, volume content, elastic properties of graphene/polymer interface layer, and decreasing the degree of intercalation. The tensile strength follows similar tendencies, except for the aspect ratio and clustering degree, where the opposite effects are observed. Nanocomposites with randomly oriented sheets of graphene demonstrate much lower Young modulus and strength as compared with the composites with the aligned graphene sheet reinforcement. It was further concluded that the structural imperfections of graphene reinforcement (like crumpling shape or random misalignment) have considerable effect on the composite performances.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Materials Science - Volume 95, December 2014, Pages 684–692
نویسندگان
, ,