کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
158018 | 456992 | 2009 | 11 صفحه PDF | دانلود رایگان |

We present results from experiments and numerical simulations of contact between a non-reactive gas (N2O and CO2) and a physical solvent (H2O) occurring in a polypropylene (PP) hollow fiber membrane contactor. The closed-loop liquid flow within the experimental setup provides transient curves representing the progressive saturation of the solvent by the gas. We develop an in-house numerical model to fully characterize the gas/liquid mass transfer both in the non-wetted and in the wetted modes, i.e., when the liquid starts partially wetting the pores of the membrane. Using experiments and numerical simulations, we show that the Henry constant (H ) and the molecular diffusion coefficient (DLA) of a non-reactive gas absorbing into a liquid solvent can be extracted by parameter estimation. Both parameters are obtained within a single experiment at a constant temperature and the comparison with temperature-dependant correlations yields excellent agreement over the whole range of temperature studied in this work. Simulations show a partial wetting of the membrane pore by the liquid meniscus during a contact between CO2 and H2O, possibly due to the plasticizer effect of CO2 inside the membrane contactor fibers.
Journal: Chemical Engineering Science - Volume 64, Issue 2, January 2009, Pages 265–275