کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1585281 | 1514913 | 2006 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Prediction of porosity percent in Al–Si casting alloys using ANN
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
دانش مواد (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this investigation a theoretical model based on artificial neural network (ANN) has been developed to predict porosity percent and correlate the chemical composition and cooling rate to the amount of porosity in Al–Si casting alloys. In addition, the sensivity analysis was performed to investigate the importance of the effects of different alloying elements, composition, grain refiner, modifier and cooling rate on porosity formation behavior of Al–Si casting alloys. By comparing the predicted values with the experimental data, it is demonstrated that the well-trained feed forward back propagation ANN model with eight nodes in hidden layer is a powerful tool for prediction of porosity percent in Al–Si casting alloys.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: A - Volume 431, Issues 1–2, 15 September 2006, Pages 206–210
Journal: Materials Science and Engineering: A - Volume 431, Issues 1–2, 15 September 2006, Pages 206–210
نویسندگان
A. Shafyei, S.H. Mousavi Anijdan, A. Bahrami,