کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1585351 | 1514914 | 2006 | 9 صفحه PDF | دانلود رایگان |

Molecular dynamics (MD) simulation and an experimental method were carried out to study the effects of applied load, hold time, and temperature on nanoscratching and nanoindentation of gold and platinum thin films. The simulated results showed that the wear depth of gold decreased as the scratching velocity was increased and the temperature was decreased. The results also indicated that when the simulated nanoindentation of gold film hold time was increased, the plastic indentation depth and the plastic energy both increased. In addition, the experimental results showed that the groove depth for gold films was larger than that of platinum films under the same machining load. The wear depth and the surface roughness of platinum films were larger than those of gold films under the same lateral machining feed. Furthermore, the simulated plastic energy of gold films was compared during nanoindentation test.
Journal: Materials Science and Engineering: A - Volume 430, Issues 1–2, 25 August 2006, Pages 332–340