کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
160330 | 457074 | 2005 | 12 صفحه PDF | دانلود رایگان |

Fibrous filters are the most common means used to separate liquid aerosol particles from an industrial gas stream. The pressure drop and penetration (=1=1-efficiency) are the most important performance criteria of the filter. In this study, experimental and modelling results describing the pressure drop and penetration evolution of a glass microfibre HEPA filter are presented. For the experimental part, the pressure drop and penetration evolutions of a HEPA filter are described as well as the influence of the filtration velocity on those evolutions. For the modelling part, the physical collection mechanisms taken into account and their mathematical expressions which are the basis of the phenomenological model are described in a first step. After that the experimental values are compared to their modelled counterparts. Different efficiency models from the literature have been tested in order to determine the one closest to the experimental values. The influence of the filtration velocity on the model is studied in the last part. The model presented here is capable of describing the pressure drop and penetration evolution of a HEPA filter over the whole filtration period.
Journal: Chemical Engineering Science - Volume 60, Issue 10, May 2005, Pages 2751–2762