کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1656091 1517447 2014 144 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
SnO2: A comprehensive review on structures and gas sensors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
پیش نمایش صفحه اول مقاله
SnO2: A comprehensive review on structures and gas sensors
چکیده انگلیسی
Metal oxides possess exceptional potential as base materials in emerging technologies. In recent times, significant amount of research works is carried out on these materials to assess new areas of applications, including optical, electronic, optoelectronic and biological domains. In such applications, the response and performance of the devices depend crucially, among other factors, on the size, shape and surface of the active oxide materials. For instance, the electronic and optical properties of oxides depend strongly on the spatial dimensions and composition [1]. The large number of atoms on the surface, and the effective van der Waals, Coulombic and interatomic coupling significantly modify the physical and chemical properties of the low dimensional oxide materials vis-á-vis its bulk counterparts. As a result, low dimensional oxide materials, such as nanoparticles, nanospheres, nanorods, nanowires, nanoribbon/nanobelts, nanotubes, nanodisks, nanosheets evoke vast and diverse interests. Thermal and physical deposition, hydro/solvothermal process, spray-pyrolysis, assisted self-assembly, oil-in-water microemulsion and template-assisted synthesis are regularly employed to synthesis one-, two- and three-dimensional nanostructures, which have become the focus of intensive research in mesoscopic physics and nanoscale devices. It not only provides good scopes to study the optical, electrical and thermal properties in quantum-confinement, but also offers important insights for understanding the functional units in fabricating electronic, optoelectronic, and magnetic devices of nanoscale dimension. Tin oxide (SnO2) is one such very important n-type oxide and wide band gap (3.6 eV) semiconductor. Its good quality electrical, optical, and electrochemical properties are exploited in solar cells, as catalytic support materials, as solid-state chemical sensors and as high-capacity lithium-storage. Previously, Chopra et al. [2] reviewed different aspects of transparent conducting SnO2 thin films. Wang et al. [3] discussed device applications of nanowires and nanobelts of semiconductor oxides, including SnO2. Batzill et al. [4] discussed about the surface of single crystalline bulk SnO2. However, it is understood that neither there is any comprehensive review on various crystallographic phases, polymorphs, bulk modulus, lattice parameters and electronic states of SnO2, nor there is any updated compilation on the recent progress and scope on SnO2 nanostructures. Therefore, the proposed review covers the past and recent progress on the said topics and is summarized in the following manner. The available theoretical and experimental works on crystal structures, bulk modulus, lattice parameters are reviewed in details. The electronic states and the band structures of these phases are discussed next. Active crystal surfaces of SnO2 play vital roles in its many interesting properties, including sensing and catalytic applications. So, a short review is written on its different surfaces, its electronic structures and density of states. The discussion on the importance of morphological variations on the properties of SnO2 is followed by a review on different methods for obtaining such structures. A detail survey on the existing literature on techniques and mechanisms for the growth of nanostructures are included. SnO2 is efficiently employed in gas sensing applications. A review on such applications is compiled based on the role of morphology and performance. The future course of SnO2 as an important material in the contemporary research is also discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Progress in Materials Science - Volume 66, October 2014, Pages 112-255
نویسندگان
, ,