کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1658790 | 1008361 | 2010 | 6 صفحه PDF | دانلود رایگان |

TiBxCyNz coatings have been prepared applying LPCVD and characterized using SEM/EDX, XRD, and Raman micro-spectroscopy. It has been shown that first-order, defect-induced Raman spectra of good quality can be obtained from TiBxCyNz coatings, even if buried within a multilayer stack. The Raman peak assignments fit well with previous work on TiC1 − xNx. Even small changes in the B:C:N ratio result in systematical shifts of the Raman peaks. With increasing nitrogen content, the acoustical phonons shift to lower frequencies. A high correlation of the Raman shifts with lattice constants derived from XRD has also been found. Additionally, intensity and FWHM of the Raman peaks also change going from carbon- to nitrogen-rich coatings. The sensitivity of the TA peak Raman shifts to changes of the investigated basic coating properties is largest for N-rich coatings. Looking at the full range of coatings the dependence of the Raman shifts is slightly nonlinear.The present work establishes Raman microscopy as a complementary non-destructive technique compared to XRD for studying coatings like TiBxCyNz. Structural, optical and chemical properties can be determined with considerably higher spatial resolution.
Journal: Surface and Coatings Technology - Volume 205, Issue 5, 25 November 2010, Pages 1339–1344