کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1659815 1008390 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Microstructural evolution of 7 wt.% Y2O3–ZrO2 thermal barrier coatings due to stress relaxation at elevated temperatures and the concomitant changes in thermal conductivity
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
پیش نمایش صفحه اول مقاله
Microstructural evolution of 7 wt.% Y2O3–ZrO2 thermal barrier coatings due to stress relaxation at elevated temperatures and the concomitant changes in thermal conductivity
چکیده انگلیسی

The purpose of this study was to evaluate the combined effect of stress and temperature on the microstructure of air plasma-sprayed 7 wt.% Y2O3–ZrO2 thermal barrier coatings, and relate microstructural changes to the thermal conductivity, kth. To simulate TBC service conditions, stand-alone tubes of YSZ were stress relaxed, starting from a compressive stress of 60 MPa, at temperatures of 1000 °C or 1200 °C. The duration of the stress relaxation test was either 5 min or 3 h. Detailed scanning electron microscopy (SEM) and Porod's specific surface area (SSA) analysis of small angle neutron scattering (SANS) results were used to determine which void systems, either interlamellar pores or intralamellar cracks, contributed to the observed relaxation of stress in the coatings. SEM investigations revealed closure of intralamellar cracks located perpendicular to the stress direction. For thinner YSZ coatings, SANS measurements indicated a statistically significant reduction in the total SSA and SSA associated with intralamellar cracks after stress relaxation at the times, temperatures, and stress investigated compared to those samples that were exposed to identical times and temperatures, but no stress. The SSA associated with the interlamellar pores was not significantly smaller in YSZ coatings stress relaxed from 60 MPa at 1200 °C for 3 h compared to as-sprayed coatings. The thermal conductivity of the coatings was strongly influenced by stress, with increases in kth observed after only 5 min at 60 MPa and 1200 °C. Reductions in the total SSA were directly linked to increases in kth.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Surface and Coatings Technology - Volume 205, Issue 1, 25 September 2010, Pages 57–65
نویسندگان
, , , , ,