کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1659988 1517691 2008 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Thermodynamic simulation of atmospheric DLI-CVD processes for the growth of chromium-based hard coatings using bis(benzene)chromium as molecular source
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
پیش نمایش صفحه اول مقاله
Thermodynamic simulation of atmospheric DLI-CVD processes for the growth of chromium-based hard coatings using bis(benzene)chromium as molecular source
چکیده انگلیسی

Direct liquid injection (DLI) is a new technology particularly convenient for feeding CVD reactors with low volatility molecular precursors. Thus DLI-CVD can operate under atmospheric pressure and is a promising process for industrial applications requiring high precursor flow rates such as continuous deposition. In order to help the experimenter, a thermodynamic approach is particularly suitable for determining the chemistry of the process, i.e. the influence of the main growth parameters such as temperature, total pressure and initial gas phase composition on the nature of the deposited phases. A choice of the most explicit representations of the thermodynamic modelling describing the great trends resulting from the variation of experimental parameters is presented. Thermodynamic calculations in the Cr–C–H, Cr–N–C–H and Cr–C–Cl–H chemical systems were made to predict the atmospheric CVD growth of carbides, nitrides and metal chromium coatings, respectively. Bis(benzene)chromium (BBC) was used as metalorganic precursor and the calculations simulated respectively the reactive gas phase mixtures BBC/solvent, BBC/NH3/solvent and BBC/C6Cl6/solvent. Even if a satisfactory agreement was found between experimental and theoretical tendencies, the deposition of metastable phases reveals that kinetics can play a major role in such processes. Based on these results, chromium carbides, nitrides and metal coatings have been successfully deposited by DLI-CVD under atmospheric pressure either as single phased or nanostructured multilayer hard coatings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Surface and Coatings Technology - Volume 203, Issues 5–7, 25 December 2008, Pages 516–520
نویسندگان
, , ,