کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1660402 | 1008401 | 2009 | 5 صفحه PDF | دانلود رایگان |

In this paper, a multiple carbide particle reinforced Fe-based surface coating has been in situ synthesized by gas tungsten arc welding (GTAW) melting a precursor mixture of graphite, ferrotitanium (Fe–Ti) and ferrovanadium (Fe–V) alloy powders on AISI 1020 steel substrate. The microstructure and wear properties of the Fe-based surface hardfacing layers were investigated by means of a scanning electron microanalysis (SEM), X-ray diffractometer (XRD) and wear tester. The results showed that (Ti,V)C multiple carbide particle and TiC carbide particle can be synthesized via reaction of Fe–Ti, Fe–V and graphite during GTAW melting process. The selection area diffraction pattern (SADP) analysis indicated that (Ti,V)C crystallizes with the cubic structure, which indicates that (Ti,V)C carbides were multiple carbides with V dissolved in the TiC structure. The Fe-based surface hardfacing layer reinforced by multiple carbides gave an excellent wear resistance and appeared a mild wear with fine scratches.
Journal: Surface and Coatings Technology - Volume 203, Issue 8, 15 January 2009, Pages 976–980