کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
1677342 1518309 2016 17 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
پیش نمایش صفحه اول مقاله
Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization
چکیده انگلیسی


• Automatic resolution of chemical components from spectral imaging is considered.
• We propose a new non-negative matrix factorization with two new penalties.
• The first penalty is sparseness to choose the number of components from data.
• Experimental results with real data demonstrate effectiveness of our method.

Advances in scanning transmission electron microscopy (STEM) techniques have enabled us to automatically obtain electron energy-loss (EELS)/energy-dispersive X-ray (EDX) spectral datasets from a specified region of interest (ROI) at an arbitrary step width, called spectral imaging (SI). Instead of manually identifying the potential constituent chemical components from the ROI and determining the chemical state of each spectral component from the SI data stored in a huge three-dimensional matrix, it is more effective and efficient to use a statistical approach for the automatic resolution and extraction of the underlying chemical components. Among many different statistical approaches, we adopt a non-negative matrix factorization (NMF) technique, mainly because of the natural assumption of non-negative values in the spectra and cardinalities of chemical components, which are always positive in actual data. This paper proposes a new NMF model with two penalty terms: (i) an automatic relevance determination (ARD) prior, which optimizes the number of components, and (ii) a soft orthogonal constraint, which clearly resolves each spectrum component. For the factorization, we further propose a fast optimization algorithm based on hierarchical alternating least-squares. Numerical experiments using both phantom and real STEM-EDX/EELS SI datasets demonstrate that the ARD prior successfully identifies the correct number of physically meaningful components. The soft orthogonal constraint is also shown to be effective, particularly for STEM-EELS SI data, where neither the spatial nor spectral entries in the matrices are sparse.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultramicroscopy - Volume 170, November 2016, Pages 43–59
نویسندگان
, , , , , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت