کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1678508 | 1009944 | 2010 | 6 صفحه PDF | دانلود رایگان |

Extension of AFM-based viscoelasticity measurement into a frequency-resolved analysis is attempted. A cantilever immersed into and interacting with distilled water was employed for the trial system. Using a home-built wideband magnetic excitation AFM, a step force with a transient time less than 1 μs is applied to the AFM cantilever and its deflection is measured. The 1st and 2nd mode resonance ringing of the cantilever was suppressed using quality-factor-control technique, so that the measurement system becomes equivalent to driving a resonance-free virtual cantilever within the bandwidth limited by the surviving 3rd mode resonance. From the obtained response of the cantilever deflection, a frequency-dependent complex compliance of the cantilever-water system was derived in a frequency range of 1–100 kHz. Effect of water confining between the tip and a mica substrate is discussed.
Journal: Ultramicroscopy - Volume 110, Issue 6, May 2010, Pages 612–617