کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1683437 | 1010504 | 2007 | 5 صفحه PDF | دانلود رایگان |

ESR investigations on single-wall carbon nanotubes irradiated with accelerated protons, helium ions, and neon ions are reported. All spectra were accurately simulated assuming that the resonance line is a convolution of up to 4 lines originating from catalyst residues, amorphous carbon, and electrons delocalized over the conducting domains of nanotubes. The faint line observed in irradiated nanotubes at g > 2.25 was assigned to magnetic impurities. However, there are no sufficient data to confirm that this line is connected to radiation-induced magnetism in carbon nanotubes. The generation of paramagnetic defects due to the bombardment of single-wall carbon nanotubes by accelerated ions is reported. These data correlate with previous Raman and thermal investigations on the same single-wall carbon nanotubes and reveals their sensitivity to ionizing radiation. The temperature dependence of ESR spectra in the range 25–250 K was used to identify the components of the ESR spectra.
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 265, Issue 1, December 2007, Pages 347–351