کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1683732 | 1518751 | 2010 | 5 صفحه PDF | دانلود رایگان |

The bonding environment of oxygen implanted in GaN is studied using Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. The implantation of 70 keV O ions in GaN results in the formation of a 200 nm – thick subsurface layer that is highly defective or amorphous depending on the implantation fluence which ranges from 1 × 1015 to 1 × 1017 cm−2. The NEXAFS spectra are simulated using the FEFF8 code assuming models that account for the formation of point defects (various configurations of O interstitial and O substitutional in N and Ga sites) as well as chemical effects such as the formation of various polymorphs of Ga oxides and oxynitrides. The implantation-induced lattice disorder is modeled by displacing atoms from their equilibrium positions by adding to their Cartesian coordinates random numbers that belong to normal distributions. The simulations reveal that when the fluence is 1 × 1015 cm−2, the O implants occupy interstitial sites preferentially in the empty channels aligned parallel to the c-axis in the plane that contains the Ga atoms and/or in the columns that consist of Ga and N atoms along the c-axis. When the fluence is equal to 1 × 1016 cm−2 the O ions substitute for N while at 1 × 1017 cm−2 they participate in the formation of mixed GaOxNy phases.
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 268, Issues 3–4, February 2010, Pages 241–245