کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1685063 | 1010545 | 2009 | 7 صفحه PDF | دانلود رایگان |

Polyethylene (PE) was irradiated with inert Ar plasma, and the chemically active PE surface was grafted with Au nanoparticles. The composition and the structure of the modified PE surface were studied using X-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectroscopy (RBS). Changes in the surface wettability were determined from the contact angle measured in a reflection goniometer. The changes in the surface roughness and morphology were followed by atomic force microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMC) or mouse NIH 3T3 fibroblasts, and their adhesion and proliferation were studied. We found that plasma discharge and Au grafting lead to dramatic changes in the surface morphology and roughness of PE. The Au nanoparticles were found not only on the sample surface, but also in the sample interior up to the depth of about 100 nm. In addition, plasma modification of the PE surface, followed with grafting Au-nanoparticles, significantly increased the attractiveness of the PE surface for the adhesion and growth of VSMC, and particularly for mouse embryonic 3T3 fibroblasts.
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 267, Issue 11, 1 June 2009, Pages 1904–1910