کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1687924 1518761 2006 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling charged defects, dopant diffusion and activation mechanisms for TCAD simulations using kinetic Monte Carlo
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سطوح، پوشش‌ها و فیلم‌ها
پیش نمایش صفحه اول مقاله
Modeling charged defects, dopant diffusion and activation mechanisms for TCAD simulations using kinetic Monte Carlo
چکیده انگلیسی

This work will show how the kinetic Monte Carlo (KMC) technique is able to successfully model the defects and diffusion of dopants in Si-based materials for advanced microelectronic devices, especially for non-equilibrium conditions. Charge states of point defects and paired dopants are also simulated, including the dependency of the diffusivities on the Fermi level and charged particle drift coming from the electric field. The KMC method is used to simulate the diffusion of the point defects, and formation and dissolution of extended defects, whereas a quasi-atomistic approach is used to take into account the carrier densities. The simulated mechanisms include the kick-out diffusion mechanism, extended defect formation and the activation/deactivation of dopants through the formation of impurity clusters. Damage accumulation and amorphization are also taken into account. Solid phase epitaxy regrowth is included, and also the dopants redistribution during recrystallization of the amorphized regions. Regarding the charged defects, the model considers the dependencies of charge reactions, electric bias, pairing and break-up reactions according to the local Fermi level. Some aspects of the basic physical mechanisms have also been taken into consideration: how to smooth out the atomistic dopant point charge distribution, avoiding very abrupt and unphysical charge profiles and how to implement the drift of charged particles into the existing electric field. The work will also discuss the efficiency, accuracy and relevance of the method, together with its implementation in a technology computer aided design process simulator.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms - Volume 253, Issues 1–2, December 2006, Pages 63–67
نویسندگان
, , , , , , ,