کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1712409 1013137 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification of cereal grains using wavelet, morphological, colour, and textural features of non-touching kernel images
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Classification of cereal grains using wavelet, morphological, colour, and textural features of non-touching kernel images
چکیده انگلیسی

Images of non-touching kernels of Canada Western Red Spring (CWRS) wheat, Canada Western Amber Durum (CWAD) wheat, barley, oats, and rye were acquired using an area scan camera. Morphological, colour, textural, and wavelet features were extracted from colour images of cereal grains for classification. A total of 51 morphological features, 93 colour features, 56 textural features, and 135 wavelet features were extracted from each kernel. Linear and quadratic statistical classifiers were used for classification using individual types of features and their combinations to find the best feature set and classification method for improved classification of cereal grains.Combining all morphological, colour, textural and wavelet features gave the best classification using the linear discriminant classifier with a classification accuracy of 99.4% for CWRS wheat, followed by 99.3%, 98.6%, 98.5%, and 89.4% for rye, barley, oats, and CWAD wheat, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosystems Engineering - Volume 99, Issue 3, March 2008, Pages 330–337
نویسندگان
, , ,