کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1712818 1013165 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neural Network Optimisation of Remotely Sensed Maize Leaf Nitrogen with a Genetic Algorithm and Linear Programming using Five Performance Parameters
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Neural Network Optimisation of Remotely Sensed Maize Leaf Nitrogen with a Genetic Algorithm and Linear Programming using Five Performance Parameters
چکیده انگلیسی
An algorithm was developed to select an optimum model among several neural network (NN) models using the Manhattan and Euclidean metric measures. The algorithm was implemented to find an optimum NN prediction model based on simultaneous comparison of five performance parameters. Weighted coefficients were given to each performance parameter based on their significance for specific condition. The associated weighted coefficients were optimised using two optimisation techniques: (i) genetic algorithm; and (ii) linear programming. The algorithm performed satisfactorily in determining acceptable models and selecting an optimum NN model. The radial basis function NN model based on green vegetation index texture yielded an average prediction accuracy of 92·1% for predicting leaf nitrogen content under field conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosystems Engineering - Volume 95, Issue 3, November 2006, Pages 359-370
نویسندگان
, , ,