کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1712818 | 1013165 | 2006 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Neural Network Optimisation of Remotely Sensed Maize Leaf Nitrogen with a Genetic Algorithm and Linear Programming using Five Performance Parameters
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An algorithm was developed to select an optimum model among several neural network (NN) models using the Manhattan and Euclidean metric measures. The algorithm was implemented to find an optimum NN prediction model based on simultaneous comparison of five performance parameters. Weighted coefficients were given to each performance parameter based on their significance for specific condition. The associated weighted coefficients were optimised using two optimisation techniques: (i) genetic algorithm; and (ii) linear programming. The algorithm performed satisfactorily in determining acceptable models and selecting an optimum NN model. The radial basis function NN model based on green vegetation index texture yielded an average prediction accuracy of 92·1% for predicting leaf nitrogen content under field conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosystems Engineering - Volume 95, Issue 3, November 2006, Pages 359-370
Journal: Biosystems Engineering - Volume 95, Issue 3, November 2006, Pages 359-370
نویسندگان
Ramesh Gautam, Suranjan Panigrahi, David Franzen,