کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1729376 1521167 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A comparison of the Covariance Matrix Adaptation Evolution Strategy and the Levenberg-Marquardt method for solving multidimensional inverse transport problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
A comparison of the Covariance Matrix Adaptation Evolution Strategy and the Levenberg-Marquardt method for solving multidimensional inverse transport problems
چکیده انگلیسی
The Covariance Matrix Adaptation Evolution Strategy (CMA-ES), a powerful optimization algorithm that mimics the process of evolution in nature, is applied to the inverse transport problems of interface location identification, source composition identification, and material mass density identification (both separately and combined) in cylindrical radioactive source/shield systems. The energies of discrete gamma-ray lines emitted by the source are assumed to be known, while the uncollided line fluxes are assumed to be measured at points external to the system. CMA-ES is compared to the Levenberg-Marquardt method, a standard gradient-based optimization algorithm, on numerical test cases using both simulated data that is perfectly consistent with the optimization process and with realistic data simulated by Monte Carlo. Numerical results indicate that the Levenberg-Marquardt method is more adept at problems with few unknowns (i.e. ⩽3), but as the number of unknowns increases, CMA-ES becomes the superior strategy. Results also indicate that a parallel version of CMA-ES would be more robust than, and have competitive run times with, the Levenberg-Marquardt method for many inverse transport problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 38, Issue 4, April 2011, Pages 897-904
نویسندگان
, , ,