کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1729590 1521173 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computational fluid dynamic analysis of core bypass flow phenomena in a prismatic VHTR
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Computational fluid dynamic analysis of core bypass flow phenomena in a prismatic VHTR
چکیده انگلیسی

The core bypass flow in a prismatic very high temperature reactor (VHTR) is an important design consideration and can have considerable impact on the condition of reactor core internals including fuels. The interstitial gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The occurrence of hot spots in the core and lower plenum and hot streaking in the lower plenum (regions of very hot gas flow) are affected by bypass flow.In the present study, three-dimensional computational fluid dynamic (CFD) calculations of a typical prismatic VHTR are conducted to better understand bypass flow phenomena and establish an evaluation method for the reactor core using the commercial CFD code FLUENT. Parametric calculations changing several factors in a one-twelfth sector of a fuel column are performed. The simulations show the impact of each factor on bypass flow and the resulting flow and temperature distributions in the prismatic core. Factors include inter-column gap-width, turbulence model, axial heat generation profile and geometry change from irradiation-induced shrinkage in the graphite block region. It is shown that bypass flow provides a significant cooling effect on the prismatic block and that the maximum fuel and coolant channel outlet temperatures increase with an increase in gap-width, especially when a peak radial factor is applied to the total heat generation rate. Also, the presence of bypass flow causes a large lateral temperature gradient in the block and also dramatically increases the variation in coolant channel outlet temperatures for a given block that may have repercussions on the structural integrity of the graphite, the neutronics and the potential for hot streaking and hot spots occurring in the lower plenum.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 37, Issue 9, September 2010, Pages 1172–1185
نویسندگان
, , ,