کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1730024 1521193 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cellular neural networks (CNN) simulation for the TN approximation of the time dependent neutron transport equation in slab geometry
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Cellular neural networks (CNN) simulation for the TN approximation of the time dependent neutron transport equation in slab geometry
چکیده انگلیسی

This paper describes the application of a multilayer cellular neural network (CNN) to model and solve the time dependent one-speed neutron transport equation in slab geometry. We use a neutron angular flux in terms of the Chebyshev polynomials (TN) of the first kind and then we attempt to implement the equations in an equivalent electrical circuit. We apply this equivalent circuit to analyze the TN moments equation in a uniform finite slab using Marshak type vacuum boundary condition. The validity of the CNN results is evaluated with numerical solution of the steady state TN moments equations by MATLAB. Steady state, as well as transient simulations, shows a very good comparison between the two methods. We used our CNN model to simulate space–time response of total flux and its moments for various c (where c is the mean number of secondary neutrons per collision).The complete algorithm could be implemented using very large-scale integrated circuit (VLSI) circuitry. The efficiency of the calculation method makes it useful for neutron transport calculations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 35, Issue 12, December 2008, Pages 2313–2320
نویسندگان
, , ,