کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1730294 1521206 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Development of a physics analysis procedure for the prismatic very high temperature gas-cooled reactors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Development of a physics analysis procedure for the prismatic very high temperature gas-cooled reactors
چکیده انگلیسی

A new physics analysis procedure has been developed for a prismatic very high temperature gas-cooled reactor based on a conventional two-step procedure for the PWR physics analysis. The HELIOS and MASTER codes were employed to generate the coarse group cross sections through a transport lattice calculation, and to perform the 3-dimensional core physics analysis by a nodal diffusion calculation, respectively. Physics analysis of the prismatic VHTRs involves particular modeling issues such as a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment and state parameters. Double heterogeneity effect was considered by using a recently developed reactivity-equivalent physical transformation method. Neutron streaming effect was quantified through 3-dimensional Monte Carlo transport calculations by using the MCNP code. Strong core-reflector interaction could be handled by applying an equivalence theory to the generation of the reflector cross sections. The effects of a spectrum shift could be covered by optimizing the coarse energy group structure. A two-step analysis procedure was established for the prismatic VHTR physics analysis by combining all the methodologies described above. The applicability of our code system was tested against core benchmark problems. The results of these benchmark tests show that our code system is very accurate and practical for a prismatic VHTR physics analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 34, Issue 11, November 2007, Pages 849–860
نویسندگان
, , , , ,