کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1730354 1521197 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization of a sodium-cooled fast reactor in an MHR–SFR synergy for TRU transmutation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Characterization of a sodium-cooled fast reactor in an MHR–SFR synergy for TRU transmutation
چکیده انگلیسی

In the task of destroying the light water reactor (LWR) transuranics (TRUs), we consider the concept of a synergistic combination of a deep-burn (DB) gas-cooled reactor followed by a sodium-cooled fast reactor (SFR), as an alternative way to the direct feeding of the LWR TRUs to the SFR. In the synergy concept, TRUs from LWR are first deeply incinerated in a graphite-moderated DB-MHR (modular helium reactor) and then the spent fuels of DB-MHR are recycled into the closed-cycle SFR. The DB-MHR core is 100% TRU-loaded and a deep-burning (50–65%) is achieved in a safe manner (as discussed in our previous work). In this analysis, the SFR fuel cycle is closed with a pyro-processing technology to minimize the waste stream to a final repository. Neutronic characteristics of the SFR core in the MHR–SFR synergy have been evaluated from the core physics point of view. Also, we have compared core characteristics of the synergy SFR with those of a stand-alone SFR transuranic burner. For a consistent comparison, the two SFRs are designed to have the same TRU consumption rate of ∼250 kg/GW EFPY that corresponds to the TRU discharge rate from three 600 MW DB-MHRs. The results of our work show that the synergy SFR, fed with TRUs from DB-MHR, has a much smaller burnup reactivity swing, a slightly greater delayed neutron fraction (both positive features) but also a higher sodium void worth and a less negative Doppler coefficients than the conventional SFR, fed with TRUs directly from the LWRs. In addition, several design measures have been considered to reduce the sodium void worth in the synergy SFR core.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 35, Issue 8, August 2008, Pages 1461–1470
نویسندگان
, , ,