کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1730410 | 1521207 | 2007 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Monte Carlo method for the model-based estimation of nuclear reactor dynamics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The safe operation and control of a nuclear system requires the accurate estimation of its dynamic state in real time. This can be pursued starting from a model of the system dynamics and on related measurements, which are typically affected by noise. In practice, the nonlinearity of the model and non-Gaussianity of the noise are such that classical approximate approaches, e.g. the extended-Kalman, Gaussian-sum and grid-based filters, often lead to inaccurate results and/or are too computationally expensive for real-time applications. On the contrary, Monte Carlo estimation methods, also called particle filters, can be very effective. The present paper investigates the use of a Monte Carlo method, called sampling importance resampling (SIR), for the estimation of the nonlinear dynamics of a nuclear reactor, as described by a simplified model of literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 34, Issue 10, October 2007, Pages 773-781
Journal: Annals of Nuclear Energy - Volume 34, Issue 10, October 2007, Pages 773-781
نویسندگان
F. Cadini, E. Zio,