کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1733627 | 1016143 | 2012 | 11 صفحه PDF | دانلود رایگان |

Scaling up alternative energy systems to replace fossil fuels is a critical imperative. Concentrating Solar Power (CSP) is a promising solar energy technology that is growing steadily in a so far small, but commercial scale. Previous life cycle assessments (LCA) have resulted in confirmation of low environmental impact and high lifetime energy return. This work contributes an assessment of potential material restrictions for a large-scale application of CSP technology using data from an existing parabolic trough plant and one prospective state-of-the-art central tower plant. The material needs for these two CSP designs are calculated, along with the resulting demand for a high adoption (up to about 8000 TWh/yr by 2050) scenario. In general, most of the materials needed for CSP are commonplace. Some CSP material needs could however become significant compared to global production. The need for nitrate salts (NaNO3 and KNO3), silver and steel alloys (Nb, Ni and Mo) in particular would be significant if CSP grows to be a major global electricity supply. The possibilities for increased extraction of these materials or substituting them in CSP design, although at a marginal cost, mean that fears of material restriction are likely unfounded.
► We examine potential material restrictions on Concentrating Solar Power.
► We make inventories of all materials in two current commercial designs.
► We discuss potential restrictions and the possibility for material substitution.
► Materials will likely not restrict CSP adoption in any way.
Journal: Energy - Volume 44, Issue 1, August 2012, Pages 944–954