کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1733838 | 1016146 | 2012 | 12 صفحه PDF | دانلود رایگان |

IGCC (Integrated Gasification Combined Cycle) is a power generation technology in which the solid feedstock is partially oxidized with oxygen and steam to produce syngas. In a conventional IGCC design without carbon capture, the syngas is purified for dust and hydrogen sulphide removal and then it is sent to a CCGT (Combined Cycle Gas Turbine) for power generation. CCS (Carbon capture and storage) technologies are expected to play a significant role in the coming decades for reducing the greenhouse gas emissions. IGCC is one of the power generation technologies having the highest potential to capture CO2 with low penalties in term of plant energy efficiency, capital and operational costs.This paper investigates the most important techno-economic and environmental indicators (e.g. power output, ancillary consumption, energy efficiency, CW consumption, normalised mass and energy balances and plant construction materials, capital and O&M (operational & maintenance) costs, specific CO2 emissions, cost of electricity, CO2 removal and avoidance costs etc.) for IGCC with CCS. Coal-based IGCC cases produce around 400–450 MW net electricity with 90% carbon capture rate. Similar IGCC plants without CCS were presented as references. Future IGCC developments for energy vectors poly-generation were also presented.
► Techno-economical evaluations of coal-based IGCC power generation with CCS.
► Model development for capital, O&M, CO2 capture costs and cash flow estimations.
► Technical and economic investigations of key plant design characteristics.
► Evaluations of carbon capture options for IGCC power generation technology.
Journal: Energy - Volume 42, Issue 1, June 2012, Pages 434–445