کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1743740 1522029 2010 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
CO2 capture for refineries, a practical approach
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
CO2 capture for refineries, a practical approach
چکیده انگلیسی

This paper evaluates the opportunities and associated costs for post-combustion capture at a world-scale complex refinery. It is concluded that it is technically feasible to apply post-combustion capture at such a refinery. The costs for capture and sequestration from a gasifier are calculated to be lowest at about 30 Euro per ton; this process currently already produces a concentrated CO2 stream. Next, the CO2 source most suited for capture appears to be a combined stack, but there are a number of other sources that may be targeted at comparable costs. In total these sources may form about 40% of the overall refinery emissions. Our evaluations show the costs of capture from such sources based on available amine technology will be in the range of 90–120 Euro per ton, which is about 3–4 times higher than the current carbon trading values. The capture of CO2 from a large amount of smaller CO2 sources will bring along even much higher costs. A high-level study of the CO2 emissions profile of a number of Shell refineries shows that, typically, up to 50% of the emitted CO2 may be captured at similar costs. About 10–20% of concentrated CO2 associated with hydrogen manufacturing may be captured at lower costs. The remainder of emitted dilute CO2 will bring along significantly higher costs. Based on this study, it is concluded for the justification of the implementation of post-combustion capture at refineries, either a significant increase in carbon trading values, mandatory regulations, or a major technological break-through is required.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Greenhouse Gas Control - Volume 4, Issue 2, March 2010, Pages 316–320
نویسندگان
, , , , ,