کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1763323 | 1019995 | 2015 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Relative orbit determination for satellite formation flying based on quantum ranging
ترجمه فارسی عنوان
تعیین مدار نسبی برای تشکیل ماهواره ای بر اساس محدوده کوانتومی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
علوم فضا و نجوم
چکیده انگلیسی
Relative orbit determination is widely used in the field of autonomously controlled satellite formation flying (SFF). Currently, some traditional techniques cannot meet the strict requirement of the accuracy of relative orbit determination for certain space missions. Thus, the primary purpose of this study is to design some special type of sensor to increase the accuracy of the distance measurement, which can eventually lead to an improvement in the accuracy of relative orbit determination for SFF. Two types of quantum sensors are proposed, based on the double-points quantum ranging (DPQR) and the triangle quantum ranging (TQR) schemes that utilize the second-order correlation between the entangled photons. Simulation result shows that the ranging accuracy of the TQR-type sensor is more precise than that of the DPQR-type one. Additionally, the unscented Kalman filter (UKF) is used to estimate the relative state of the SFF, which uses the TQR-type sensor as the measurement model compared with a traditional sensor. The simulation results show that the quantum sensor is superior to the traditional one and their estimation errors of the position and velocity remain within 1Â cm and 1Â mm/s, respectively, at a relative distance of 1Â km between the chief and deputy satellites.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Space Research - Volume 56, Issue 4, 15 August 2015, Pages 680-692
Journal: Advances in Space Research - Volume 56, Issue 4, 15 August 2015, Pages 680-692
نویسندگان
Yanghe Shen, Luping Xu, Hua Zhang, Shanshan Chen, Shibin Song,