کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1765112 1020084 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Time dependent charging of layer clouds in the global electric circuit
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
پیش نمایش صفحه اول مقاله
Time dependent charging of layer clouds in the global electric circuit
چکیده انگلیسی

There is much observational data consistent with the hypothesis that the ionosphere-earth current density (Jz) in the global electric circuit, which is modulated by both solar activity and thunderstorm activity, affects atmospheric dynamics and cloud cover. One candidate mechanism involves Jz causing the accumulation of space charge on droplets and aerosol particles, that affects the rate of scavenging of the latter, notably those of Cloud Condensation Nuclei (CCN) and Ice Forming Nuclei (IFN) ( Tinsley, 2008 and Tinsley, 2010). Space charge is the difference, per unit volume, between total positive and total negative electrical charge that is on droplets, aerosol particles (including the CCN and IFN) and air ions. The cumulative effects of the scavenging in stratiform clouds and aerosol layers in an air mass over the lifetime of the aerosol particles of 1–10 days affects the concentration and size distribution of the CCN, so that in subsequent episodes of cloud formation (including deep convective clouds) there can be effects on droplet size distribution, coagulation, precipitation processes, and even storm dynamics.Because the time scales for charging for some clouds can be long compared to cloud lifetimes, the amount of charge at a given time, and its effect on scavenging, depend more on the charging rate than on the equilibrium charge that would eventually be attained. To evaluate this, a new time-dependent charging model has been developed. The results show that for typical altostratus clouds with typical droplet radii 10 μm and aerosol particles of radius of 0.04 μm, the time constant for charging in response to a change in Jz is about 800 s, which is comparable to cloud formation and dissipation timescales for some cloud situations. The charging timescale is found to be strong functions of altitude and aerosol concentration, with the time constant for droplet charging at 2 km in air with a high concentration of aerosols being about an hour, and for clouds at 10 km in clean air being about a minute. The charging timescale is also a strong function of droplet size, with the rate for 15 μm radii droplets being about 70% longer than that for 10 μm droplets, and the rate for 5 μm radii droplets being about 50% smaller. The equilibrium charges accumulated on droplets ranged from tens to hundreds of elementary charges, which is comparable to observed values, and to vary approximately directly with Jz and inversely with the ion production rate q, which is due to the Galactic Cosmic Ray (GCR) flux and depends strongly on altitude.For the case of Jz varying directly with q, which to some extent is the case during Forbush decreases of the GCR flux, the effects on the equilibrium charge tend to cancel. In one run with the model, both q and Jz were decreased by 30%. There was little change in equilibrium charge, but the timescale for charging increased by about 40%, or equivalently, the rate of charging decreased by about 40%. Thus, for exploring the hypothesis that space charge provides a link between GCR (and other inputs that modulate Jz) and changes in clouds and atmospheric dynamics, it is necessary to consider variations in the rate of charging. The present work is intended to provide illustrative examples of time dependent charging for several different types of layer clouds.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Space Research - Volume 50, Issue 6, 15 September 2012, Pages 828–842
نویسندگان
, ,