کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1768220 1020218 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using the radial basis function neural network to predict ionospheric critical frequency of F2 layer over Wuhan
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
پیش نمایش صفحه اول مقاله
Using the radial basis function neural network to predict ionospheric critical frequency of F2 layer over Wuhan
چکیده انگلیسی

Neural networks (NNs) have been applied to ionospheric predictions recently. This paper uses radial basis function neural network (RBF-NN) to forecast hourly values of the ionospheric F2 layer critical frequency(foF2), over Wuhan (30.5N, 114.3E), China. The false nearest neighbor method is used to determine the embedding dimension, and the principal component analysis (PCA) is used to reduce noise and dimension. The whole study is based on a sample of about 26,000 observations of foF2 with 1-h time resolution, derived during the period from January 1981 to December 1983. The performance of RBF-NN is estimated by calculating the normalized root-mean-squared (NRMSE) error, and its results show that short-term predictions of foF2 are improved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Space Research - Volume 43, Issue 11, 2 June 2009, Pages 1780–1785
نویسندگان
, , , , ,