کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1768728 | 1020236 | 2007 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Galaxy colours in the AKARI deep SEP survey
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
علوم فضا و نجوم
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We investigate the segregation of the extragalactic population via colour criteria to produce an efficient and inexpensive methodology to select specific source populations as a function of far-infrared flux. Combining galaxy evolution scenarios and a detailed spectral library of galaxies, we produce simulated catalogues incorporating segregation of the extragalactic population into component types (normal, star-forming, AGN) via colour cuts. As a practical application we apply our criteria to the deepest survey to be undertaken in the far-infrared with the AKARI (formerly ASTRO-F) satellite. Using the far-infrared wavebands of the Far-Infrared Surveyor (FIS, one of the focal-plane instruments on AKARI) we successfully segregate the normal, starburst and ULIRG populations. We also show that with additional MIR imaging from AKARI's Infrared Camera (IRC), significant contamination and/or degeneracy can be further decreased and show a particular example of the separation of cool normal galaxies and cold ULIRG sources. We conclude that our criteria provide an efficient means of selecting source populations (including rare luminous objects) and produce colour-segregated source counts without the requirement of time intensive ground-based follow up to differentiate between the general galaxy population.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Space Research - Volume 40, Issue 5, 2007, Pages 605-611
Journal: Advances in Space Research - Volume 40, Issue 5, 2007, Pages 605-611
نویسندگان
Chris P. Pearson, Woong-Seob Jeong, Shuji Matsuura, Hideo Matsuhara, Takao Nakagawa, Hiroshi Shibai, Mitsunobu Kawada, Toshinobu Takagi, Hyung Mok Lee, Mai Shirahata,