کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1789135 | 1023494 | 2009 | 5 صفحه PDF | دانلود رایگان |

We demonstrate p–i–n organic light-emitting diodes (OLEDs) incorporating an n-doping transport layer which comprises 8-hydroxy-quinolinato lithium (Liq) doped into 4′7-diphyenyl-1,10-phenanthroline (Bphen) as ETL and a p-doping transport layer which includes tetrafluro-tetracyano-quinodimethane (F4-TCNQ) doped into 4,4′,4″-tris(3-methylphenylphenylamono) triphenylamine (m-MTDATA). In order to examine the improvement in the conductivity of transport layers, hole-only and electron-only devices are fabricated. The current and power efficiency of organic light-emitting diodes have been improved significantly after introducing a novel n-doping (Bphen: 33 wt% Liq) layer as an electron transport layer (ETL) and a p-doping layer composed of m-MTDATA and F4-TCNQ as a hole transport layer (HTL). Compared with the control device (without doping), the current efficiency and power efficiency of Device C (most efficient) is enhanced by approximately 51% and 89%, respectively, while driving voltage is reduced by 29%. This improvement is attributed to the improved conductivity of the transport layers that leads to the efficient charge balance in the emission zone.
Journal: Current Applied Physics - Volume 9, Issue 4, July 2009, Pages 732–736