کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1798052 1524803 2016 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Investigation on structural, Mössbauer and ferroelectric properties of (1−x)PbFe0.5Nb0.5O3–(x)BiFeO3 solid solution
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
پیش نمایش صفحه اول مقاله
Investigation on structural, Mössbauer and ferroelectric properties of (1−x)PbFe0.5Nb0.5O3–(x)BiFeO3 solid solution
چکیده انگلیسی


• Structural, Mössbauer, ferroelectric studies on (1−x)PFN–xBiFeO3 multiferroics.
• Composition dependent changes in crystallographic and magnetic structure.
• System exhibits phase transition from monoclinic to rhombohedral with x.
• Supporting results from Raman and FTIR studies.
• Mössbauer show phase transition from paramagnetic to antiferromagnetic with x.

In this study, (1−x)PbFe0.5Nb0.5O3(PFN)–(x)BiFeO3(BFO) multiferroic solid solutions with x=0.0, 0.1, 0.2, 0.3 and 0.4 were synthesized through single step solid state reaction method and characterized thoroughly through X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FTIR), Raman, Mössbauer spectroscopy and ferroelectric studies. The room temperature (RT) XRD studies confirmed the formation of single phase with negligible amount of secondary phases (x=0.2 and 0.4). The zoomed XRD patterns of (1−x)PFN–(x)BFO solid solutions showed the clear structural phase transition from monoclinic (Cm) to rhombohedral (R3c) at x=0.4. The Raman spectra of the (1−x)PFN–(x)BFO solid solutions showed the composition dependent phase transition from monoclinic (Cm) to rhombohedral (R3c). With increasing x in PFN, the modes related monoclinic symmetry changes to those of rhombohedral symmetry. The RT Mössbauer spectroscopy results evidenced the existence of composition dependent phase transition from paramagnetic to weak antiferromagnetic ordering and weak antiferromagnetic to antiferromagnetic ordering. The Mössbauer spectroscopy showed paramagnetic behavior with a doublet for x=0.0, 0.1 and 0.2 are shows the weak antiferromagnetic with paramagnetic ordering. For x=0.3 and 0.4 shows the sextet pattern and it is a clear evidence of antiferromagnetism. The ferroelectric (P–E) loops at RT indicate the presence of small polarization, as the x concentration increases in PFN, the remnant polarization and coercive field were decreased, which may due to the increase in the conductivity and leaky behavior of the samples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Magnetism and Magnetic Materials - Volume 418, 15 November 2016, Pages 122–127
نویسندگان
, , , , , ,