کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1806549 1025215 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Measuring small compartments with relatively weak gradients by angular double-pulsed-field-gradient NMR
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
پیش نمایش صفحه اول مقاله
Measuring small compartments with relatively weak gradients by angular double-pulsed-field-gradient NMR
چکیده انگلیسی

NMR diffusion–diffraction patterns observed in compartments in which restricted diffusion occurs are a useful tool for direct extraction of compartment sizes. Such diffusion–diffraction patterns may be observed when the signal intensity E(q,∆) is plotted against the wave-vector q (when q = (2π)− 1γδG). However, the smaller the compartment sizes are, the higher are the q-values needed to observe such diffractions. Moreover, these q-values should be achieved using short gradient pulses requiring extremely strong gradient systems. The angular double-pulsed-field gradient (d-PFG) NMR methodology has been proposed as a tool to extract compartment sizes using relatively low q-values. In this study, we have used single-PFG (s-PFG) NMR and angular d-PFG NMR to characterize the size of microcapillaries of about 2 ± 1 μm in diameter. We found that these microcapillaries are characterized by relatively strong background gradients that completely masked the effects of the microscopic anisotropy (μA) of the sample, resulting in a completely unexpected E(φ) profile in the angular d-PFG NMR experiments. We also show that bipolar angular d-PFG NMR experiments can largely suppress the effect of these background gradients resulting in the expected E(φ) profile from which the compartment dimensions could be obtained with relatively weak gradient pulses. These results demonstrate that the above methodology provides a quick, reliable, non-invasive means for estimating small pore sizes with relatively weak gradients in the presence of large magnetic susceptibility.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Magnetic Resonance Imaging - Volume 31, Issue 3, April 2013, Pages 401–407
نویسندگان
, , , ,