کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1807026 1025239 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automated classification of multispectral MR images using unsupervised constrained energy minimization based on fuzzy logic
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
پیش نمایش صفحه اول مقاله
Automated classification of multispectral MR images using unsupervised constrained energy minimization based on fuzzy logic
چکیده انگلیسی

Constrained energy minimization (CEM) has proven highly effective for hyperspectral (or multispectral) target detection and classification. It requires a complete knowledge of the desired target signature in images. This work presents “Unsupervised CEM (UCEM),” a novel approach to automatically target detection and classification in multispectral magnetic resonance (MR) images. The UCEM involves two processes, namely, target generation process (TGP) and CEM. The TGP is a fuzzy-set process that generates a set of potential targets from unknown information and then applies these targets to be desired targets in CEM. Finally, two sets of images, namely, computer-generated phantom images and real MR images, are used in the experiments to evaluate the effectiveness of UCEM. Experimental results demonstrate that UCEM segments a multispectral MR image much more effectively than either Functional MRI of the Brain's (FMRIB's) automated segmentation tool or fuzzy C-means does.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Magnetic Resonance Imaging - Volume 28, Issue 5, June 2010, Pages 721–738
نویسندگان
, , , ,