کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1808017 1025306 2006 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multivariate analysis of fMRI data by oriented partial least squares
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
پیش نمایش صفحه اول مقاله
Multivariate analysis of fMRI data by oriented partial least squares
چکیده انگلیسی

Partial least squares (PLS) has been used in multivariate analysis of functional magnetic resonance imaging (fMRI) data as a way of incorporating information about the underlying experimental paradigm. In comparison, principal component analysis (PCA) extracts structure merely by summarizing variance and with no assurance that individual component structures are directly interpretable or that they represent salient and useful features. Oriented partial least squares (OrPLS) is a new PLS-like analysis paradigm in which extracted components can be oriented away from undesirable noise or confounds in the data and toward a desired targeted structure reflecting the fMRI experiment.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Magnetic Resonance Imaging - Volume 24, Issue 7, September 2006, Pages 953–958
نویسندگان
, ,