کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1822391 1526357 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the scintillation efficiency of carborane-loaded liquid scintillators for thermal neutron detection
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم ابزار دقیق
پیش نمایش صفحه اول مقاله
On the scintillation efficiency of carborane-loaded liquid scintillators for thermal neutron detection
چکیده انگلیسی

The scintillation efficiency in response to thermal neutrons was studied by loading different concentrations of carborane (0–8.5 wt%) and naphthalene (0 and 100 g/L) in five liquid organic scintillators. The sample was characterized in Pb and Cd shields under the irradiation of the thermal neutrons from a 252Cf source. A method was developed to extract the net neutron response from the pulse-height spectra. It was found that the order of scintillation efficiencies for both γ-rays and thermal neutrons is as follows: diisopropylnaphthalene>toluene (concentrated solutes)>toluene~pseudocumene~m-xylene. The quench constants, obtained by fitting the Stern–Volmer model to the plots of light output versus carborane concentration, are in the range of 0.35–1.4 M−1 for all the scintillators. The Birks factors, estimated using the specific energy loss profiles of the incident particles, are in the range of 9.3–14 mg cm−2 MeV−1 for all the samples. The light outputs are in the range of 63–86 keV electron equivalents (keVee) in response to thermal neutrons. Loading naphthalene generally promotes the scintillation efficiency of the scintillator with a benzene derivative solvent. Among all the scintillators tested, the diisopropylnaphthalene-based scintillator shows the highest scintillation efficiency, lowest Birks factor, and smallest quench constants. These properties are primarily attributed to the double fused benzene-ring structure of the solvent, which is more efficient to populate to the excited singlet state under ionizing radiation and to transfer the excitation energy to the fluorescent solutes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment - Volume 769, 1 January 2015, Pages 112–122
نویسندگان
, , , , , ,