کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1882913 | 1533497 | 2016 | 8 صفحه PDF | دانلود رایگان |

• A compressed-sensing (CS)-based deblurring scheme is performed.
• We implement the proposed algorithm and performed a systematic simulation.
• A blurred noisy projection images of a 3D numerical breast phantom is generated.
• The improving of the image performance is done in DBT as well as 2D mammography.
In this work, we investigated a compressed-sensing (CS)-based deblurring scheme incorporated with the total-variation (TV) regularization penalty for image deblurring of high accuracy and adopted it into the image reconstruction in conventional digital breast tomosynthesis (DBT). We implemented the proposed algorithm and performed a systematic simulation to demonstrate its viability for improving the image performance in DBT as well as two-dimensional (2D) mammography. In the simulation, blurred noisy projection images of a 3D numerical breast phantom were generated by convolving their original (or exact) version by a designed 2D Gaussian filter kernel (standard deviation=2 in pixel unit, kernel size=11×11), followed by adding Gaussian noise (mean=0, variance=0.05), and deblurred by using the algorithm before performing the DBT reconstruction procedure. Here the projection images were taken with a half tomographic angle of θ=20° and an angle step of Δθ=2°. We investigated the image performance of the reconstructed DBT images quantitatively in terms of the modulation and the slice-sensitive profile (SSP).
Journal: Radiation Physics and Chemistry - Volume 127, October 2016, Pages 147–154