کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1895389 1533636 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multiple kernel boosting framework based on information measure for classification
ترجمه فارسی عنوان
چارچوب تقویت هسته چندگانه بر اساس اندازه گیری اطلاعات برای طبقه بندی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
چکیده انگلیسی

The performance of kernel-based method, such as support vector machine (SVM), is greatly affected by the choice of kernel function. Multiple kernel learning (MKL) is a promising family of machine learning algorithms and has attracted many attentions in recent years. MKL combines multiple sub-kernels to seek better results compared to single kernel learning. In order to improve the efficiency of SVM and MKL, in this paper, the Kullback–Leibler kernel function is derived to develop SVM. The proposed method employs an improved ensemble learning framework, named KLMKB, which applies Adaboost to learning multiple kernel-based classifier. In the experiment for hyperspectral remote sensing image classification, we employ feature selected through Optional Index Factor (OIF) to classify the satellite image. We extensively examine the performance of our approach in comparison to some relevant and state-of-the-art algorithms on a number of benchmark classification data sets and hyperspectral remote sensing image data set. Experimental results show that our method has a stable behavior and a noticeable accuracy for different data set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 89, August 2016, Pages 175–186
نویسندگان
, , , ,