کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1897331 | 1044521 | 2011 | 14 صفحه PDF | دانلود رایگان |

A new approach based on Wasserstein distances, which are numerical costs of an optimal transportation problem, allows us to analyze nonlinear phenomena in a robust manner. The long-term behavior is reconstructed from time series, resulting in a probability distribution over phase space. Each pair of probability distributions is then assigned a numerical distance that quantifies the differences in their dynamical properties. From the totality of all these distances a low-dimensional representation in a Euclidean space is derived, in which the time series can be classified and statistically analyzed. This representation shows the functional relationships between the dynamical systems under study. It allows us to assess synchronization properties and also offers a new way of numerical bifurcation analysis.The statistical techniques for this distance-based analysis of dynamical systems are presented, filling a gap in the literature, and their application is discussed in a few examples of datasets arising in physiology and neuroscience, and in the well-known Hénon system.
Journal: Physica D: Nonlinear Phenomena - Volume 240, Issue 1, 1 January 2011, Pages 45–58