کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1899270 | 1045030 | 2013 | 47 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Differential-Algebraic Analysis of Symplectic and Lax Structures Related with New Riemann-Type Hydrodynamic Systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic hierarchy, proposed recently by O. D. Artemovych, M. V. Pavlov, Z. Popowicz and A. K. Prykarpatski, is developed. In addition to the Lax-type representation, found before by Z. Popowicz, a closely related representation is constructed in exact form by means of a new differential-functional technique. The bi-Hamiltonian integrability and compatible Poisson structures of the generalized Riemann type hierarchy are analyzed by means of the symplectic and gradient-holonomic methods. An application of the devised differential-algebraic approach to other Riemann and Vakhnenko type hydrodynamic systems is presented.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Reports on Mathematical Physics - Volume 71, Issue 3, June 2013, Pages 305–351
Journal: Reports on Mathematical Physics - Volume 71, Issue 3, June 2013, Pages 305–351
نویسندگان
Yarema A. Prykarpatsky, Orest D. Artemovych, Maxim V. Pavlov, Anatolij K. Prykarpatski,