کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1899270 1045030 2013 47 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Differential-Algebraic Analysis of Symplectic and Lax Structures Related with New Riemann-Type Hydrodynamic Systems
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
The Differential-Algebraic Analysis of Symplectic and Lax Structures Related with New Riemann-Type Hydrodynamic Systems
چکیده انگلیسی

A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic hierarchy, proposed recently by O. D. Artemovych, M. V. Pavlov, Z. Popowicz and A. K. Prykarpatski, is developed. In addition to the Lax-type representation, found before by Z. Popowicz, a closely related representation is constructed in exact form by means of a new differential-functional technique. The bi-Hamiltonian integrability and compatible Poisson structures of the generalized Riemann type hierarchy are analyzed by means of the symplectic and gradient-holonomic methods. An application of the devised differential-algebraic approach to other Riemann and Vakhnenko type hydrodynamic systems is presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Reports on Mathematical Physics - Volume 71, Issue 3, June 2013, Pages 305–351
نویسندگان
, , , ,