کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1899411 | 1045049 | 2012 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Quantum Measures and Integrals
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We show that quantum measures and integrals appear naturally in any L2-Hilbert space H. We begin by defining a decoherence operator D(A, B) and its associated q-measure operator μ(A) = D(A, A) on H. We show that these operators have certain positivity, additivity and continuity properties. If Ï is a state on H, then D Ï(A, B) = tr[Ï D(A,B)] and μÏ(A)= D Ï(A,A) have the usual properties of a decoherence functional and q-measure, respectively. The quantization of a random variable f is defined to be a certain self-adjoint operator
fË on H. Continuity and additivity properties of the map
fâ¦fË are discussed. It is shown that if f is nonnegative, then
fË is a positive operator. A quantum integral is defined by
â«fdμÏ=tr(ÏfË). A tail-sum formula is proved for the quantum integral. The paper closes with an example that illustrates some of the theory.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Reports on Mathematical Physics - Volume 69, Issue 1, February 2012, Pages 87-101
Journal: Reports on Mathematical Physics - Volume 69, Issue 1, February 2012, Pages 87-101
نویسندگان
S. Gudder,