کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1899492 1045063 2006 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An algebraic formulation of quantum mechanics in fractional dimensions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
An algebraic formulation of quantum mechanics in fractional dimensions
چکیده انگلیسی

I formulate an algebraic approach to quantum mechanics in fractional dimensions in which the momentum and position operators P, Q satisfy the R-deformed Heisenberg relations, and find representations of P, Q in which the angular momentum l and the dimension d, which can by any real positive number, appear as parameters. These representations lead to corresponding representations of paraboson operators which can be used, for example, to solve the time-dependent harmonic oscillator for any d>0 using the method of Lewis and Riesenfeld. I develop algebraic properties of Weyl-ordered polynomials in P, Q by viewing them as tensor operators with respect to the Lie algebra sl2, and also discuss the q-analogue deformation of these properties.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Reports on Mathematical Physics - Volume 57, Issue 1, February 2006, Pages 131-145